The Third Annual
North American Computational Linguistics Olympiad
2009
www.naclo.cs.cmu.edu

Open Round
February 4, 2009
Contest Booklet

Your Name: _______________________________________
Registration Number: _________________________________
Your School: _______________________________________
City, State, Zip: _____________________________________
Your Grade: ______

Start Time: ___
End Time: __

Your Teacher’s Name: ________________________________

Please also make sure to write your registration number and your name on each page that you turn in. Each problem will be graded by a different judge and pages with no registration numbers will not be graded.
Welcome to the third annual North American Computational Linguistics Olympiad!
You are among the few, the brave, the brilliant, to participate in this unique event! In
order to be completely fair to all participants across North America, we need you to
read, understand and follow these rules completely.

Rules

1. The contest is three hours long and includes six problems, labeled A to F.
2. Follow the facilitators' instructions carefully.
3. If you want clarification on any of the problems, talk to a facilitator. The facilitator
will consult with the jury before answering.
4. You may not discuss the problems with anyone except as described in item 3.
5. Each problem is worth a specified number of points, with a total of 100 points. On
all problems, points are given for "practice," that is, for getting the right answers.
Some problems also assign points for “theory," that is for written descriptions of
how you solved the problem. You should therefore show all your work.
6. We will grade only work in this booklet. All your answers should be in the spaces
provided in this booklet. **DO NOT WRITE ON THE BACK OF THE PAGES.**
7. Write your name and registration number on each page:
 Here is an example: Jessica Sawyer #850
8. The top 100 participants (approximately) across the continent in the open round
will be invited to the second (invitational) round on March 11, 2009.
9. Each problem has been thoroughly checked by linguists and computer scientists as
well as students like you for clarity, accuracy, and solvability. Some problems are
more difficult than others, but all can be solved using ordinary reasoning and ana-
lytic skills. You don’t need to know anything about linguistics or about these lan-
guages in order to solve them.
10. If we have done our job well, almost no one will solve all these problems com-
pletely in the time allotted. So don’t be discouraged if you don’t finish everything.
11. If you have any comments, suggestions or complaints about the competition, we
ask you to remember these for the web based evaluation. We will send you an e-
mail shortly after the competition is finished with instructions on how to fill it out.
12. **DO NOT DISCUSS THE PROBLEMS UNTIL THEY HAVE BEEN POSTED
 ONLINE!**
Oh, and have fun!
Braille is a tactile writing system, based on a series of raised dots, that is widely used by the blind. It was invented in 1821 by Louis Braille to write French, but has since been adapted to many other languages. English, which uses the Roman alphabet just as French does, required very little adaptation, but languages that do not use the Roman alphabet, such as Japanese, Korean, or Chinese, are often organized in a very different manner!

To the right is a Japanese word written in the tenji (“dot characters”) writing system. The large dots represent the raised bumps; the tiny dots represent empty positions.

A1. The following tenji words represent atari, haiku, katana, kimono, koi, and sake. Which is which? You don’t need to know either Japanese or Braille to figure it out; you’ll find that the system is highly logical.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>b.</td>
</tr>
<tr>
<td>c.</td>
<td>d.</td>
</tr>
<tr>
<td>e.</td>
<td>f.</td>
</tr>
</tbody>
</table>

A2. What are the following words?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>g.</td>
<td>h.</td>
</tr>
</tbody>
</table>

A3. Write the following words in tenji characters. Please write very legibly!!

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>i. samurai</td>
<td>j. miso</td>
</tr>
</tbody>
</table>
Christopher Robin is the most educated friend of Winnie-the-Pooh, and he can spell a lot of simple words, and even some long and delicate words, but unfortunately he often spells them incorrectly. For example, he has helped Owl to write the following two notices on the door of Owl’s residence at The Chestnuts:

- Ples ring if an rnser is reqird.
- Plez cnoke if an rnsr is not reqid.

Although Owl is very proud of these notices, he is also concerned that some of his friends may not understand them; in fact, even Owl himself finds the notices a bit confusing.

To help Christopher Robin with his spelling, Winnie-the-Pooh and Owl have bought him an electronic spelling tutor, which pronounces various words and asks the user to spell them. If the user makes a mistake, the tutor shows the correct spelling, along with a comment on the accuracy of the user’s spelling; it uses four comments: almost right, quite close, a bit confusing, and very confusing. For instance, Christopher Robin has received the following feedback during his initial experiments with the tutor:

<table>
<thead>
<tr>
<th>Spelling by Christopher Robin</th>
<th>Correct Spelling</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>flocinaucinihilipilification</td>
<td>flocinaucinihilipilification</td>
<td>almost right</td>
</tr>
<tr>
<td>owll</td>
<td>owll</td>
<td>almost right</td>
</tr>
<tr>
<td>pseudopseudohipoparathyroidism</td>
<td>pseudopseudohipoparathyroidism</td>
<td>almost right</td>
</tr>
<tr>
<td>ples</td>
<td>please</td>
<td>quite close</td>
</tr>
<tr>
<td>reqird</td>
<td>required</td>
<td>quite close</td>
</tr>
<tr>
<td>rnser</td>
<td>answer</td>
<td>quite close</td>
</tr>
<tr>
<td>antidisestablishmentarianism</td>
<td>antidisestablishmentarianism</td>
<td>quite close</td>
</tr>
<tr>
<td>wol</td>
<td>owl</td>
<td>quite close</td>
</tr>
<tr>
<td>humuhumunukunukuapuaa’a plez</td>
<td>humuhumunukunukuapuaa’a please</td>
<td>quite close</td>
</tr>
<tr>
<td>cnoke</td>
<td>knock</td>
<td>quite close</td>
</tr>
<tr>
<td>rnsr</td>
<td>answer</td>
<td>quite close</td>
</tr>
<tr>
<td>reqid</td>
<td>required</td>
<td>quite close</td>
</tr>
<tr>
<td>pneumonoultramicroscopic-cilikovolkanokoniosis</td>
<td>pneumonoultramicroscopic-silicovolcanokoniosis</td>
<td>a bit confusing</td>
</tr>
<tr>
<td>mispeln</td>
<td>misspelling</td>
<td>a bit confusing</td>
</tr>
<tr>
<td>mestipenk</td>
<td>mistyping</td>
<td>a bit confusing</td>
</tr>
</tbody>
</table>

The tutor uses four comments: almost right, quite close, a bit confusing, and very confusing.
(B) Nok-nok! (2/2)

Your task is to determine how the tutor chooses its comments and give the appropriate comment for each of the following six misspellings of the word “typo”. You do not need to explain your answers; just indicate the right comments.

For each misspelling, put the “X” sign in the column with the appropriate comment. Please note that each row in the table must have exactly one “X” sign. If you mark multiple comments for the same misspelling, it will be graded as a wrong answer. Also note that there is no penalty for a wrong answer; thus, if you are unsure of the right

<table>
<thead>
<tr>
<th>Misspelling of “typo”</th>
<th>Comment by the Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Almost right</td>
</tr>
<tr>
<td>oooo</td>
<td></td>
</tr>
<tr>
<td>opyt</td>
<td></td>
</tr>
<tr>
<td>pyto</td>
<td></td>
</tr>
<tr>
<td>typ</td>
<td></td>
</tr>
<tr>
<td>typa</td>
<td></td>
</tr>
<tr>
<td>typotypo</td>
<td></td>
</tr>
</tbody>
</table>

As a side note, the dictionary definitions of the long and delicate words misspelled by Christopher Robin are as follows; these definitions are unrelated to the problem.

floccinaucinihilipilification: act or habit of estimating or describing something as worthless, or making something to be worthless by deprecation.

pseudopseudohypparathyroidism: inherited disorder that closely simulates the symptoms, but not the consequences, of pseudohypparathyroidism; thus, it has mild or no manifestations of hypoparathyroidism or tetanic convulsions.

antidisestablishmentarianism: nineteenth century movement in England opposed to the separation of church and state.

humuhumunukunukuapua‘a: one of several species of triggerfish.

pneumonoultramicroscopicsilicovolcanokoniosis: lung disease caused by the inhalation of very fine silica dust, mostly found in volcanoes.
Orthography design is the process of developing an alphabet and spelling rules for a language. A good orthography has several features:

* Given a spoken word, there’s no question of how to spell it.
* Given a written word, there’s no question of how to pronounce it.
* In the modern world, it’s increasingly important that it be reasonably easy to type!

Quechua is spoken today by millions of people in Peru, Ecuador, and Bolivia, the descendents of the citizens of the Incan Empire. Quechua speakers are rapidly joining the Information Age, and both Google and Microsoft Windows now come in Quechua!

Like in English, there are more sounds in Quechua than there are letters on a keyboard, but there are ways around that. For example, we can assign one letter to multiple sounds so long as a reader can always predict, from its position in the word or from other letters in the word, which sound is meant. So if the sound [b] only ever occurs right after [m], and [p] never occurs right after [m], we can just write “p” for both, since you’ll be able to predict from the previous letter whether “p” means [b] or [p].

This “phonemic principle” is the central principle of most orthographies, not just because it reduces letters but also because our minds categorize sounds in the same way.
(C) Letters for Cuzco (2/4)

Here are 33 words in Cuzco Quechua, as they are pronounced but not necessarily as they are written. [q] and [χ] represent special sounds that don’t occur in English.

<table>
<thead>
<tr>
<th>awtu</th>
<th>car</th>
<th>qasi</th>
<th>free</th>
<th>seqay</th>
<th>to climb</th>
</tr>
</thead>
<tbody>
<tr>
<td>kanka</td>
<td>roasted</td>
<td>qatoχ</td>
<td>merchant</td>
<td>sikasika</td>
<td>caterpillar</td>
</tr>
<tr>
<td>karu</td>
<td>far</td>
<td>qatuy</td>
<td>to barter</td>
<td>sipeχ</td>
<td>murderer</td>
</tr>
<tr>
<td>kiru</td>
<td>teeth</td>
<td>qatisaχ</td>
<td>I will follow</td>
<td>sipiy</td>
<td>to kill</td>
</tr>
<tr>
<td>kisa</td>
<td>nettle</td>
<td>qelqay</td>
<td>writer</td>
<td>soχtaral</td>
<td>sixty cents</td>
</tr>
<tr>
<td>kisu</td>
<td>cheese</td>
<td>qelqay</td>
<td>to write</td>
<td>sunka</td>
<td>beard</td>
</tr>
<tr>
<td>kunka</td>
<td>neck</td>
<td>qolqe</td>
<td>silver</td>
<td>toχra</td>
<td>ball of ash</td>
</tr>
<tr>
<td>kusa</td>
<td>great</td>
<td>qosa</td>
<td>husband</td>
<td>uyariy</td>
<td>to listen</td>
</tr>
<tr>
<td>layqa</td>
<td>witch</td>
<td>qosqo</td>
<td>Cuzco</td>
<td>uywayχ</td>
<td>caretaker</td>
</tr>
<tr>
<td>oqe</td>
<td>spotted</td>
<td>saqey</td>
<td>to abandon</td>
<td>waleχ</td>
<td>a lot</td>
</tr>
<tr>
<td>qasa</td>
<td>frost</td>
<td>saysa</td>
<td>striped</td>
<td>weqaw</td>
<td>waist</td>
</tr>
</tbody>
</table>

C1. Show that we don’t need separate letters for [q] and [χ].
(C) Letters for Cuzco (3/4)

C2. Show that we can’t represent [a] and [i] by the same letter.

C3. Show that we can’t represent [a] and [e] by the same letter.
C4. Most modern Quechua orthographies get by with only three of the five vowels [a], [e], [i], [o], and [u]. Show how this is possible.
The following Guaraní verb forms are listed along with their English translations.

<table>
<thead>
<tr>
<th>N.</th>
<th>Guaraní</th>
<th>English translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>japyhyta</td>
<td>We will be catching</td>
</tr>
<tr>
<td>2</td>
<td>nohyvykôiri</td>
<td>He is not enjoying</td>
</tr>
<tr>
<td>3</td>
<td>ombokapu</td>
<td>He is shooting</td>
</tr>
<tr>
<td>4</td>
<td>pemomaitei</td>
<td>You are greeting</td>
</tr>
<tr>
<td>5</td>
<td>ndokarumo'ài</td>
<td>He will not be eating</td>
</tr>
<tr>
<td>6</td>
<td>ndapevo'ôima</td>
<td>You were not taking</td>
</tr>
<tr>
<td>7</td>
<td>napekororômo'ài</td>
<td>You will not be crying</td>
</tr>
<tr>
<td>8</td>
<td>noñe'ëi</td>
<td>He is not talking</td>
</tr>
<tr>
<td>9</td>
<td>okororô</td>
<td>He is crying</td>
</tr>
<tr>
<td>10</td>
<td>ndajajupirima</td>
<td>We were not waking up</td>
</tr>
<tr>
<td>11</td>
<td>ahyvykôima</td>
<td>I was enjoying</td>
</tr>
<tr>
<td>12</td>
<td>añe'ëta</td>
<td>I will be talking</td>
</tr>
<tr>
<td>13</td>
<td>namomaiteiri</td>
<td>I am not greeting</td>
</tr>
<tr>
<td>14</td>
<td>japurahei</td>
<td>We are singing</td>
</tr>
</tbody>
</table>

D1. Translate into English.
(a) akaruma (b) ojupita (c) ndavo'omo'ài (d) napekororô (e) ndapyhyima

D2. Translate into Guaraní.
(f) you are not shooting (g) he is not singing (h) we will be eating (i) I will not be singing

Notes: “you” is always plural in the sentences above. A squiggle over a vowel indicates that it is nasal (pronounced partly through the nose). The letter ñ is pronounced like the sound in the middle of “piñata” or “onion”. The letter y is pronounced like the “u” in “cut”. The letter j and the apostrophe (’) are specific consonants.

Guaraní is one of the official languages (along with Spanish) of Paraguay, where it is spoken by 94% of the population.
(E) Summer Eyes (1/2)

Below are two news stories, each of which has had three sentences automatically selected as a summary by a computer, based on a number of criteria. The criteria are the same for each story. Within each story, some scores may depend on other sentences. Below each story, a change has been proposed to one of the sentences.

E1. Rescore the sentences after the change, using the same criteria: in each score box, either write the appropriate new score if it's different from the old one, or LEAVE IT BLANK IF IT WOULD BE UNCHANGED. For instance, a correctly formatted (but wrong) possible answer for the first sentence is:

<table>
<thead>
<tr>
<th>Sentence Number</th>
<th>Criteria 1st</th>
<th>Criteria 2nd</th>
<th>Criteria 3rd</th>
<th>Criteria 4th</th>
<th>Criteria 5th</th>
<th>Criteria 6th</th>
<th>Total score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 X</td>
<td>3.4</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>-1</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
<td>2</td>
<td></td>
<td>0.7</td>
</tr>
</tbody>
</table>

Taiwan authorities say a powerful earthquake has struck the southeastern part of the island.

E2. For each story, put the symbol X in exactly three of the boxes in the first column, the ones corresponding to the sentences in the new summary.

E3: Give the added sentence in the second story scores according to the same criteria.

Story 1 input:

Powerful earthquake strikes Taiwan

<table>
<thead>
<tr>
<th>Sentence Number</th>
<th>Criteria 1st</th>
<th>Criteria 2nd</th>
<th>Criteria 3rd</th>
<th>Criteria 4th</th>
<th>Criteria 5th</th>
<th>Criteria 6th</th>
<th>Total score</th>
<th>Sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 X</td>
<td>3.4</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>-1</td>
<td>7.4</td>
<td>Taiwan authorities say a powerful earthquake has struck the southeastern part of the island.</td>
</tr>
<tr>
<td>2</td>
<td>2.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>1.3</td>
<td>There were no immediate reports of damages or injuries from the Tuesday morning quake, authorities said.</td>
</tr>
<tr>
<td>3 X</td>
<td>1.2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-1</td>
<td>7.2</td>
<td>The Taiwan Central Weather Bureau says the magnitude 6.0 quake struck just offshore, near a sparsely populated area about 20 miles (30 kilometers) north of the city of Taidung.</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>3.1</td>
<td>However, the U.S. Geological Survey says the quake had a magnitude of 5.2.</td>
</tr>
<tr>
<td>5 X</td>
<td>0.0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>4.0</td>
<td>Buildings shook in Taipei about 90 miles (150 kilometers) to the northwest of the epicenter.</td>
</tr>
</tbody>
</table>

Story 1 output: An “extractive summary” consisting of sentences 1, 3, and 5.

Story 1 proposed change: Add “in Taipei” between “damages or injuries” and “from” in sentence 2.
(E) Summer Eyes (2/2)

Story 2 input:

<table>
<thead>
<tr>
<th>Sentence Number</th>
<th>Criteria 1st</th>
<th>Criteria 2nd</th>
<th>Criteria 3rd</th>
<th>Criteria 4th</th>
<th>Criteria 5th</th>
<th>Criteria 6th</th>
<th>Total Score</th>
<th>Sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>3.8</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>-3</td>
<td>8.8</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>50.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>60.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>40.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>50.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>X</td>
<td>50.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mexico’s interior minister has died in a plane crash, after the small aircraft he was travelling in plummeted into rush hour traffic in the nation’s capital.

He was one of the architects of conservative Felipe Calderón’s 2006 election victory.

Calderón described Mourínó as “a compatriot who worked for the service of his county.”

Jose Luis Santiago Vasconcelos, the deputy attorney-general until recently and a key player for years in the war on drug cartels, also died in the crash.

Communications minister Luis Tellez said everything pointed to the crash being an accident but Jorge Lara, vice-president of a national civil aviation rescue committee, told Reuters “It could have been anything, from mechanical failure to sabotage.”

A colleague of Lara at the scene said it appeared something happened to the plane in the air and it nosedived into the ground.

Surrounding buildings were not damaged.

Newspaper El Universal reported an air traffic controller as saying the aircraft had been coming in to land at Mexico City’s airport when it hit the ground between tall office buildings.

Tellez said there was no contact with the plane, which had been returning from a trip to the central city of San Luis Potosí, in the moments before the crash.

Seven other people were killed and 40 injured when the government jet smashed into the streets of Mexico City yesterday, setting several cars ablaze, Reuters reported.

Story 2 output: An “extractive summary” consisting of sentences 1, 5, and 9.

Story 2 proposed change: Add the following sentence between the current second and third sentences:

| n/a | Seven other people were killed and 40 injured when the government jet smashed into the streets of Mexico City yesterday, setting several cars ablaze, Reuters reported. |
(5 points)

(F) Help my camera! (1/1)

In the following dialogues, the computer is misunderstanding the human because it is misinterpreting certain words or phrases:

Example 1

Human: There's this restaurant on Bancroft that's supposed to be really good that I heard about from my mother. Can you help me find it?

Computer: Where did you last see your mother?

Example 2

Human: My friend is looking for information about on-line movie databases. What should I tell him?

Computer: You can tell movie databases about movies that you have seen.

Example 3

Human: My parents are having a hard time choosing a new digital camera. How can I help them?

Computer: I'm afraid I don't understand your question. People don't help cameras.

F1. What are the words (or phrases) that the computer is misinterpreting?

Ex1: ____________ Ex2: ____________ Ex3: ____________

F2. What rule is the computer using to interpret those words (or phrases)?

F3. Give a better rule that would make the computer interpret the words (or phrases) correctly in these examples.
NACLO 2009 organizers

General chair:
Lori Levin, Carnegie Mellon University

Program committee chair:
Dragomir Radev, University of Michigan

Program committee:
Emily Bender, University of Washington
Aleka Blackwell, Middle Tennessee State University
Bozhidar Bozhianov
Eric Breck, Rhodes College
Ivan Derzhanski, Bulgarian Academy of Sciences
Jason Eisner, Johns Hopkins University
Eugene Fink, Carnegie Mellon University
Adam Hesterberg, Princeton University
Anatole Gershman, Carnegie Mellon University
Boris Iomdin, Russian Academy of Sciences
Joshua Katz, Princeton University
Lori Levin, Carnegie Mellon University
Patrick Littell, University of British Columbia
Scott Mackie, University of British Columbia
Ruslan Mitkov, University of Wolverhampton
David Mortensen, University of Pittsburgh
Barbara Partee, University of Massachusetts
Thomas Payne, University of Oregon
James Pustejovsky, Brandeis University
Harold Somers, Dublin City University
Ekaterina Spriggs, Carnegie Mellon University
Richard Sproat, Oregon Health and Science University
Todor Tchervenkov, Université Lumière Lyon 2
Xiaojin "Jerry" Zhu, University of Wisconsin
Richard Wicentowski, Swarthmore College

School liaison:
Amy Troyani, Taylor Allderdice High School

Administrative assistant:
Mary Jo Bensasi, Carnegie Mellon University
NACLO 2009 organizers (cont’d)

Problem credits:
Problem A: Patrick Littell
Problem B: Eugene Fink
Problem C: Patrick Littell
Problem D: Bozhidar Bozhanov
Problem E: Dragomir Radev and Adam Hesterberg
Problem F: Emily Bender

Other members of the organizing committee:
Eugene Fink, Carnegie Mellon University
Ketty Gann, Boeing
Patrick Littell, University of British Columbia
Thomas Payne, University of Oregon
Susanne Vejdemo, the Linguist List
Richard Wicentowski, Swarthmore College

Web site and registration:
Ida Mayer, Carnegie Mellon University
Eugene Fink, Carnegie Mellon University

Jury members
The program committee plus:
Jae-Kyu Lee, Princeton University
Helen Mukomel, DeVry University

US Team coaches:
Dragomir Radev, University of Michigan, head coach
Lori Levin, Carnegie Mellon University, coach
Adam Hesterberg, Princeton University, assistant coach

Student assistants:
Adam Emerson, University of Michigan
Blumie Gurarie, University of Michigan
Mercedes Harvey, University of Michigan
Nate LaFave, University of Michigan
Victor Pudeyev, University of Michigan
Vahed Qazvinian, University of Michigan
Meredith Rogan, University of Michigan
David Ross, University of Michigan
Laine Stranahan, University of Michigan
Contest site coordinators:

- Brandeis University: James Pustejovsky
- Carnegie Mellon University and University of Pittsburgh: Lori Levin and David Mortensen
- Cornell University: Claire Cardie, Randy Hess, Lillian Lee, and Jennifer Wofford
- Dalhousie University: Connie Adsett
- Georgetown University: Graham Katz
- Dalhousie University, Aleka Blackwell
- Minnesota State University, Mankato: Rebecca Bates
- New York University: Adam Meyers and Satoshi Sekine
- Ohio State University: Chris Brew
- Princeton University: Christiane Fellbaum, Adam Hesterberg, and Jae-Kyu Lee
- San Diego State University: Mark Gawron
- San José State University: Roula Svorou
- Simon Fraser University: John Alderete, Cliff Burgess, and Maite Taboada
- Stanford University: Josh Falk, Jenny Finkel, Dan Jurafsky, and Kyle Noe
- University of Great Falls: Porter Coggins
- University of Illinois: Roxana Girju and Julia Hockenmaier
- University of Illinois, Chicago: Robert Sloan
- University of Lethbridge: Kevin Grant
- University of Maryland, Baltimore County: Marjorie McShane and Sergei Nirenburg
- University of Memphis: Vasile Rus
- University of Michigan: Steve Abney and San Duanmu
- University of North Texas: Rada Mihalcea
- University of Oregon: Thomas Payne
- University of Ottawa: Diana Inkpen and Stan Szpakowicz
- University of Pennsylvania: Mitch Marcus and Cheryl Hickey
- University of Southern California: David Chiang
- University of Texas at Dallas: Vincent Ng
- University of Texas at El Paso: Gabby Gandara
- University of Utah: Naomi Fox
- University of Washington: Jim Hoard
- University of Wisconsin: Nathanael Fillmore and Xiaojin Zhu
- High school sites: Dragomir Radev

All material in this booklet © 2009, North American Computational Linguistics Olympiad and the authors of the individual problems. Please do not copy or distribute without permission.
NACLO 2009 sponsors

Sponsorship chair:
James Pustejovsky, Brandeis University

Corporate, academic, and government sponsors
National Science Foundation
Google
Microsoft
Everyzing
M*Modal
JUST. Systems
The North American Chapter of the Association for Computational Linguistics (NAACL)
Cambridge University Press
Oxford University Press
Carnegie Mellon University’s Language Technologies Institute
University of Michigan
Brandeis University
University of Pittsburgh Linguistics Department

Individual contributions
Helga and Charles Marqusee
Linnae and David Evans

Special thanks to:
Tanya Korelsky, NSF
More than 80 high school teachers from 27 states and provinces
And many other individuals and organizations

All material in this booklet © 2009, North American Computational Linguistics Olympiad and the authors of the individual problems. Please do not copy or distribute without permission.
NACLO 2009 sites

as well as more than 80 high schools throughout the USA and Canada